

INSTRUCTION & SAFETY MANUAL

10 A SIL 3 Relay Output Module for NE Load and 230 Vac coil voltage DIN-Rail, Model D5290S-091

Characteristics

General Description:

The D5290S-091 is a relay module suitable for the switching of safety related circuits, up to SIL 3 level according to IEC 61508:2010 Ed.2 for high risk industries.

It provides isolation between input channel and output contacts. The input channel requires 230 Vac voltage signal to drive the relay coils.

D5290S-091 provides two NO contacts for normally energized load and a NC contact for service purpose, in order to switch the NE load on both supply lines. Compatibility with specific DO cards with pulse testing needs to be verified.

This relay module is not suitable for low-current consumption applications (system-to-system signalling, driving LEDs, etc.).

See the following pages for Functional Safety applications with related SIL value.

Mounting on standard DIN-Rail. in Safe Area.

Functional Safety Management Certification:

G.M. International is certified by TUV to conform to IEC61508:2010 part 1 clauses 5-6 for safety related systems up to and included SIL3

Technical Data

Input: 230 Vac nom. (195 to 250 Vac).

Current consumption: 10 mA @ 230 Vac, typical. Power dissipation: 2 W @ 230 Vac, typical.

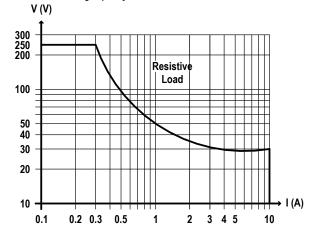
Isolation (Test Voltage): Input / All Outputs: 2.5 KV; Out 1 / Out 2: 500 V.

Output: 1 voltage free SPDT relay contact identified with outputs: Out 1 (NO contact) terminals 13-21 and Service Load Out (NC contact) terminals 13-15;

1 voltage free SPST relay contact identified with output Out 2 (NO contact) terminals 14-22.

Terminals 13-21 (Out 1) and 14-22 (Out 2) are open when relay is de-energized, closed in energized relay condition.

Service load output (not SIL) at terminals 13-15 is normally close when relay is de-energized, open in energized relay condition.


Contact material: Ag Alloy (Cd free).

Contact rating: 10 A 250 Vac 2500 VA, 10 A 250 Vdc 300 W (resistive load).

Contact inrush current: 16 A at 24 Vdc, 250 Vac.

Contact min. switching current: 100 mA.

DC Load breaking capacity:

Mechanical / Electrical life: 5 * 106 / 5 * 104 operation, typical.

Operate / Release time: 8 / 4 ms, typical. *Frequency response:* 10 Hz maximum.

Compatibility:

CE mark compliant, conforms to Directive: 2014/30/EU EMC, 2014/35/EU LVD, 2011/65/EU RoHS.

Environmental conditions:

Operating: temperature limits - 40 to + 60 °C, relative humidity 95 %, up to 55 °C.

Storage: temperature limits - 45 to + 80 °C.

Approvals:

TÜV Certificate No. C-IS-236198-04, SIL 3 conforms to IEC61508:2010 Ed.2.

SIL 3 Functional Safety TÜV Certificate conforms to IEC61508:2010 Ed.2, for Management of Functional Safety.

Mounting: EN/IEC60715 TH 35 DIN-Rail.

Weight: about 165 g.

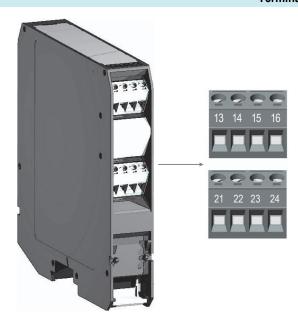
Connection: by polarized plug-in disconnect screw terminal blocks to accommodate terminations up to 2.5 mm².

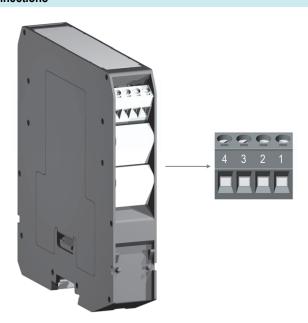
Location: installation in Safe Area.

Protection class: IP 20.

Dimensions: Width 22.5 mm, Depth 123 mm, Height 120 mm.

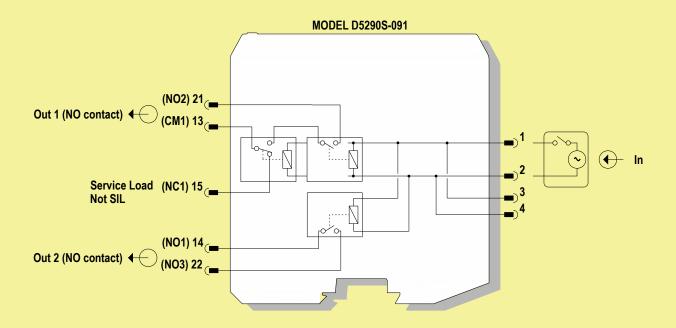
Ordering Information


Model: D5290S-091 DIN-Rail accessories: Cover and fix MCHP196


Front Panel and Features

- SIL 3 according to IEC 61508:2010 Ed.2 for Tproof = 14 / 20 years (≤10% / >10 % of total SIF) with PFDavg (1 year) 7.02 E-06, SFF = 98.96 % for NE load.
- Systematic capability SIL 3.
- 10 A SIL 3 contact for NE load and contact for service purpose.
- 16 A inrush current at 24 Vdc / 250 Vac.
- Input/Output isolation.
- EMC Compatibility to EN61000-6-2, EN61000-6-4, EN61326-1, EN61326-3-1 for safety system.
- TUV certificate.
- TÜV Functional Safety Certification.
- Simplified installation using standard DIN-Rail.

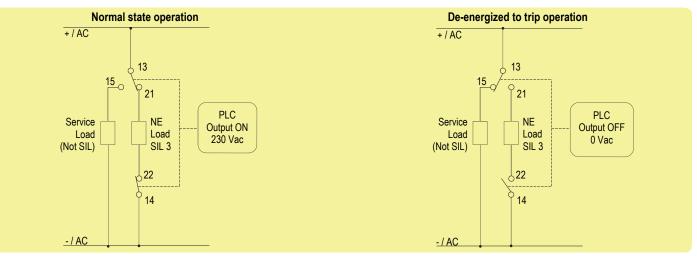
Terminal block connections



SAFE AREA

13	CM1 Common pole of: Normally Open contact (Out 1) and Normally Closed contact (Service Load (Not SIL) out
14	NO1 pole of Normally Open contact (Out 2)
15	NC1 pole of Normally Closed contact (Service Load (Not SIL) out)
16	Not used
21	NO2 pole of Normally Open contact (Out 1)
22	NO3 pole of Normally Open contact (Out 2)
23	Not used
24	Not used

1 or 3 230 Vac Input signal line
2 or 4 230 Vac Input signal line


SAFE AREA

See the following pages for Functional Safety applications with related SIL value.

Relay contact shown in de-energized position. Terminals 13-21 and 14-22 are open; terminal 13-15 is closed.

1) Application D5290S-091 - SIL 3 Load Normally Energized Condition (NE) and Normally Energized Relay, with interruption of both load supply lines

Description:

Input Signal from PLC/DCS is normally High (230 Vac) and is applied to pins 1-2 or 3-4 in order to Normally Energize (NE) the internal relays.

Input Signal from PLC/DCS is Low (0 Vac) during "de-energize to trip" operation, in order de-energize the internal relays.

The Load is Normally Energized (NE), therefore its safe state is to be de-energized; the Service Load is normally de-energized, therefore it energizes during "de-energized to trip" operation.

Disconnection of the NE Load is done on both supply lines.

The following table describes the status (open or closed) of each output contact when the input signal is High or Low.

Operation	Input Signal Pins 1-2 or 3-4	Pins 13- 21	Pins 14 - 22	Pins 13 - 15	NE Load (SIL3) Pins 21 - 22	Service Load (Not SIL) Pin 15 — -AC / Supply
Normal	High (230 Vac)	Closed	Closed	Open	Energized	De-Energized
Trip	Low (0 Vac)	Open	Open	Closed	De-Energized	Energized

Safety Function and Failure behavior:

D5290S-091 is considered to be operating in Low Demand mode, as a Type A module, having Hardware Fault Tolerance (HFT) = 0.

In the 1st Functional Safety application, the normal state operation of relay module is energized, with NE (Normally Energized) loads.

In case of alarm or request from process, the relay module is de-energized (safe state), de-energizing loads.

The failure behaviour of the relay module is described by the following definitions:

- □ Fail-Safe State: it is defined as the output load being de-energized;
- □ Fail Safe: this failure causes the system to go to the defined Fail-Safe state without a demand from the process;
- □ Fail Dangerous: failure mode that does not respond to a demand from the process (i.e. being unable to go to the defined Fail-Safe state), so that the output load remains energized;
- □ Fail "No effect": failure mode of a component that plays a part in implementing the Safety Function but that is neither a safe failure nor a dangerous failure. When calculating the SFF, this failure mode is not taken into account.
- □ Fail "Not part": failure mode of a component that is not part of the Safety Function but part of the circuit diagram and is listed for completeness. When calculating the SFF, this failure mode is not taken into account.

Failure rate data: taken from Siemens Standard SN29500.

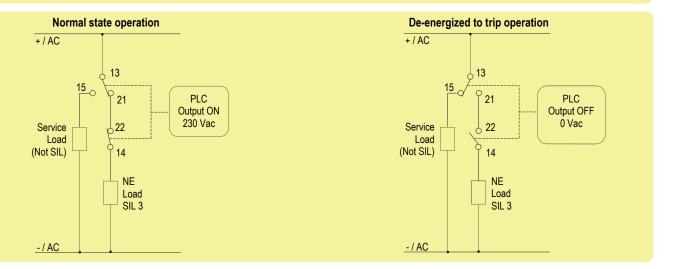
Failure rate table:

Failure category	Failure rates (FIT)
λ_{dd} = Total Dangerous Detected failures	0.00
λ_{du} = Total Dangerous Undetected failures	1.60
λ_{sd} = Total Safe Detected failures	0.00
λ_{su} = Total Safe Undetected failures	152.45
$\lambda_{tot safe}$ = Total Failure Rate (Safety Function) = $\lambda_{dd} + \lambda_{du} + \lambda_{sd} + \lambda_{su}$	154.05
MTBF (safety function, single channel) = (1 / λ _{tot safe}) + MTTR (8 hours)	741 years
$\lambda_{\text{no effect}}$ = "No effect" failures	117.95
λ _{not part} = "Not Part" failures	11.40
$\lambda_{\text{tot device}}$ = Total Failure Rate (Device) = $\lambda_{\text{tot safe}}$ + $\lambda_{\text{no effect}}$ + $\lambda_{\text{not part}}$	283.40
MTBF (device, single channel) = $(1 / \lambda_{tot device})$ + MTTR (8 hours)	402 years

Failure rates table according to IEC 61508:2010 Ed.2:

	λ_{sd}	λ_{su}	λ_{dd}	λ_{du}	SFF		
	0.00 FIT	152.45 FIT	0.00 FIT	1.60 FIT	98.96%		

PFDavg vs T[Proof] table (assuming Proof Test coverage of 99%), with determination of SIL supposing module contributes ≤10% of total SIF dangerous failures:


	-	•	,
T[Proof] = 1 year		T[Proof] = 14	years
PFDavg = 7.02E-06 Valid for	SIL 3 F	PFDavg = 9.83E-05 \	/alid for SIL 3

PFDavg vs T[Proof] table (assuming Proof Test coverage of 99%), with determination of SIL supposing module contributes >10% of total SIF dangerous failures:

T[Proof] = 20 years
PFDavg = 1.40E-04 Valid for SIL 3

Systematic capability SIL 3.

2) Application D5290S-091 - SIL 3 Load Normally Energized Condition (NE) and Normally Energized Relay, with interruption of only one load supply line

Description:

Input Signal from PLC/DCS is normally High (230 Vac) and is applied to pins 1-2 or 3-4 in order to Normally Energize (NE) the internal relays.

Input Signal from PLC/DCS is Low (0 Vac) during "de-energize to trip" operation, in order de-energize the internal relays.

The Load is Normally Energized (NE), therefore its safe state is to be de-energized; the Service Load is normally de-energized, therefore it energizes during "de-energized to trip" operation.

Disconnection of the NE Load is done by on only one load supply line...

The following table describes the status (open or closed) of each output contact when the input signal is High or Low.

Operation	Input Signal Pins 1-2 or 3-4	Pins 13 - 21	Pins 14 - 22	Pins 13 - 15	NE Load (SIL3) Pins 14 — - AC/ Supply	Service Load (Not SIL) Pins 15 — - / AC Supply
Normal	High (230 Vac)	Closed	Closed	Open	Energized	De-Energized
Trip	Low (0 Vac)	Open	Open	Closed	De-Energized	Energized

Safety Function and Failure behavior:

D5290S-091 is considered to be operating in Low Demand mode, as a Type A module, having Hardware Fault Tolerance (HFT) = 0.

In the 2nd Functional Safety application, the normal state operation of relay module is energized, with NE (Normally Energized) load.

In case of alarm or request from process, the relay module is de-energized (safe state), de-energizing the load.

The failure behaviour of the relay module is described by the following definitions:

- □ Fail-Safe State: it is defined as the output load being de-energized;
- □ Fail Safe: this failure causes the system to go to the defined Fail-Safe state without a demand from the process;
- □ Fail Dangerous: failure mode that does not respond to a demand from the process (i.e. being unable to go to the defined Fail-Safe state), so that the output load remains energized;
- □ Fail "No effect": failure mode of a component that plays a part in implementing the Safety Function but that is neither a safe failure nor a dangerous failure. When calculating the SFF, this failure mode is not taken into account.
- □ Fail "Not part": failure mode of a component that is not part of the Safety Function but part of the circuit diagram and is listed for completeness.

When calculating the SFF, this failure mode is not taken into account. Failure rate data: taken from Siemens Standard SN29500.

Failure rate table:

λ _{dd} = Total Dangerous Detected failures	0.00
λ _{du} = Total Dangerous Undetected failures	1.60
λ_{sd} = Total Safe Detected failures	0.00
λ _{su} = Total Safe Undetected failures	152.45
$\lambda_{\text{tot safe}}$ = Total Failure Rate (Safety Function) = $\lambda_{\text{dd}} + \lambda_{\text{du}} + \lambda_{\text{sd}} + \lambda_{\text{su}}$	154.05
MTBF (safety function, single channel) = (1 / λ _{tot safe}) + MTTR (8 hours)	741 years
λ _{no effect} = "No effect" failures	117.95
λ _{not part} = "Not Part" failures	11.40
$\lambda_{\text{tot device}}$ = Total Failure Rate (Device) = $\lambda_{\text{tot safe}}$ + $\lambda_{\text{no effect}}$ + $\lambda_{\text{not part}}$	283.40
MTBF (device, single channel) = (1 / λ _{tot device}) + MTTR (8 hours)	402 years

Failure rates table according to IEC 61508:2010 Ed.2:

	λ_{sd}	λ_{su}	λ_{dd}	λ_{du}	SFF		
	0.00 FIT	152.45 FIT	0.00 FIT	1.60 FIT	98.96%		

PFDavg vs T[Proof] table (assuming Proof Test coverage of 99%), with determination of SIL supposing module contributes ≤10% of total SIF dangerous failures:

	<u> </u>
T[Proof] = 1 year	T[Proof] = 14 years
PFDavg = 7.02E-06 Valid for SIL 3	PFDavg = 9.83E-05 Valid for SIL 3

PFDavg vs T[Proof] table (assuming Proof Test coverage of 99%), with determination of SIL supposing module contributes >10% of total SIF dangerous failures:

T[Proof] = 20 years
PFDavg = 1.40E-04 Valid for SIL 3

Systematic capability SIL 3.

Testing procedure at T-proof

The proof test shall be performed to reveal dangerous faults which are undetected by diagnostic. This means that it is necessary to specify how dangerous undetected fault, which have been noted during the FMEDA, can be revealed during proof test. The Proof test consists of the following steps:

Steps	Action
1	Bypass the safety-related PLC or take other appropriate action to avoid a false trip when removing the unit for test.
Verify the input-to-output functionality, considering the input signal and each relay output contact state: Out 1 (NO contact CM1-NO2) at terminals "13"-"21": when input is energized, Out 1 must be closed; while shutdown of the input channel, Out 1 must be open; Out 2 (NO contact NO1-NO3) at terminals "14"-"22": when input is energized, Out 2 must be closed; while shutdown of the input channel, Out 2 must be open; Service load output (CM1-NC1) at terminals "13"-"15": when input is energized, this output must be open; while shutdown of the input channel, this output must be clo The channel functionality must be verified for a min to max input voltage change (195 to 250 Vac).	
3	Remove the bypass from the safety-related PLC or restore normal operation inserting the unit.

This test will reveal approximately 99 % of possible Dangerous Undetected failures in the repeater.

Warning

D5290S-091 is an electrical apparatus installed into standard EN50022 T35 DIN-Rail located in Safe Area within the specified operating temperature limits Tamb - 40 to +60 °C. D5290S-091 must be installed, operated and maintained only by qualified personnel, in accordance to the relevant national/international installation standards, following the established installation rules.

Warning: de-energize main power source (turn off power supply voltage) and disconnect plug-in terminal blocks before opening the enclosure to avoid electrical shock when connected to live hazardous potential.

Failure to properly installation or use of the equipment may risk to damage the unit or severe personal injury.

The unit cannot be repaired by the end user and must be returned to the manufacturer or his authorized representative.

Any unauthorized modification must be avoided.

Operation

D5290S-091 relay module is suitable for the switching of safety related circuits, providing isolation between the input and output contacts.

D5290S-091 provides two NO contacts for normally energized load and a NC contact for service purpose, in order to switch the NE load on both supply lines.

See the previous pages for Functional Safety applications with related SIL value.

A "RELAY STATUS" yellow led lights when input is powered, showing that relay is energized.

Installation

D5290S-091 is a relay output module housed in a plastic enclosure suitable for installation on T35 DIN-Rail according to EN50022.

D5290S-091 unit can be mounted with any orientation over the entire ambient temperature range.

Electrical connection of conductors up to 2.5 mm² are accommodated by polarized plug-in removable screw terminal blocks which can be plugged in/out into a powered unit without suffering or causing any damage.

The wiring cables have to be proportionate in base to the current and the length of the cable.

On the section "Function Diagram" and enclosure side a block diagram identifies all connections.

Identify the function and location of each connection terminal using the wiring diagram on the corresponding section, as an example (interruption of both NE load supply lines):

Connect 230 Vac signal lines at input terminals "1" and "2" (input terminals "3" and "4" are provided for daisy chain connection to the next module).

Connect positive or AC load supply line to CM1 Common pole (terminal "13" (for SIL 3 NE load and Not SIL Service Load)).

Connect SIL 3 Normally Energized (NE) Load at terminal "21" and "22".

Connect negative or AC load supply line at terminal "14" (for SIL 3 NE load).

Connect Not SIL Service Load at terminal "15" and to negative or AC load supply line.

Installation and wiring must be in accordance to the relevant national or international installation standards, make sure that conductors are well isolated from each other and do not produce any unintentional connection.

Connect SPST relay contacts checking the load rating to be within the contact maximum rating (10 A 250 Vac 2500 VA, 10 A 250 Vdc 300 W resistive load).

To prevent relay contacts from damaging, connect an external protection (fuse or similar), chosen according to the relay breaking capacity diagram on data sheet.

The enclosure provides, according to EN60529, an IP20 minimum degree of mechanical protection (or similar to NEMA Standard 250 type 1) for indoor installation, outdoor installation requires an additional enclosure with higher degree of protection (i.e. IP54 to IP65 or NEMA type 12-13) consistent with the effective operating environment of the specific installation. Units must be protected against dirt, dust, extreme mechanical (e.g. vibration, impact and shock) and thermal stress, and casual contacts.

If enclosure needs to be cleaned use only a cloth lightly moistened by a mixture of detergent in water.

Any penetration of cleaning liquid must be avoided to prevent damage to the unit. Any unauthorized card modification must be avoided.

Relay output contact must be connected to load non exceeding category II overvoltage limits.

Warning: de-energize main power source (turn off power supply voltage) and disconnect plug-in terminal blocks before opening the enclosure to avoid electrical shock when connected to live hazardous potential.

Start-up

Before powering the inputs of unit check that all wires are properly connected. Check conductors for exposed wires that could touch each other causing dangerous unwanted shorts. Enabling input, the "RELAY STATUS" yellow led must be lit and load circuit must be energized because relay output contacts (Out 1 and Out 2) are closed. Indeed, disabling input, the "RELAY STATUS" yellow led must be turned off and load circuit must be de-energized because relay output contacts (Out 1 and Out 2) are open.