D1060
technology for safety

Characteristics:

General Description:

The single channel DIN-Rail Frequency-Pulse Converter, Repeater and Trip Amplifiers D1060S converts and repeats a low level frequency signal from magnetic pick-up, contact, proximity, open-collector transistor sensor, TTL CMOS located in Hazardous Area, into a $0 / 4-20 \mathrm{~mA}$ or $0 / 1-5 \mathrm{~V}$ or $0 / 2-10 \mathrm{~V}$ signal to drive a Safe Area load. Repeater output can be direct, divided by 10, 100, 1000, 10000, 100000, 1000000 or programmed with alarm function.
One independent Alarm Trip Amplifier is also provided. Alarm energizes, or de-energizes, an SPST optocoupled open-collector transistor for high, low or low-startup alarm functions. The alarm trip point is settable over the entire input signal range.
When repeater output is used as alarm output the unit provides two independent alarms. Function:

1 channel I.S. input from frequency-pulse signals, provides 3 port isolation (input/output/supply) and current (source mode) or voltage output signal. In addition it repeats the frequency input and provides one SPST transistor with adjustable alarm trip point.
Signalling LEDs:
Power supply indication (green), frequency input (yellow), alarms (red).

Configurability:

Software configurable for frequency range, mA or V output signal, alarm parameters, transistor operation, by GM Pocket Portable Configurator PPC 1090, powered by the unit or configured by PC via RS-232 serial line with PPC1092 Adapter and SWC1090 Configurator software. To operate PPC1090 or PPC1092 refer to instruction manual. DIP-Switch configurable for hardware setting of input sensor.
EMC:
Fully compliant with CE marking applicable requirements.

Front Panel and Features:

- Input from Zone 0 (Zone 20), Division 1, installation in Zone 2, Division 2.
- Magnetic pick-up, proximity input sensor.
- Frequency range DC to 50 KHz input.
- Repeater output direct or divided by $10,100,1000,10000,10000$ or 1000000.
- 0/4-20 mA, 0/1-5 V, 0/2-10 V Output Signal linear or reverse.
- High Accuracy, $\mu \mathrm{P}$ controlled converter.
- Three port isolation, Input/Output/Supply.
- EMC Compatibility to EN61000-6-2, EN61000-6-4.
- Fully programmable operating parameters.
- ATEX, IECEx, UL \& C-UL, FM \& FM-C, INMETRO, EAC-EX, CCC Certifications.
- Type Approval Certificate DNV and KR for maritime applications.
- High Reliability, SMD components.
- High Density, 1 channel converter, repeater and trip amplifier per unit.
- Simplified installation using standard DIN Rail and plug-in terminal blocks.
- 250 Vrms (Um) max. voltage allowed to the instruments associated with the barrier.

Ordering Information:

Model: D1060S	
Power Bus enclosure	/B

Operating parameters are programmable by the GM Pocket Portable Configurator PPC1090 or via RS-232 serial line with PPC1092 Adapter and SWC1090 Configurator software. If the parameters are provided with the purchasing order the unit will be configured accordingly, otherwise the unit will be supplied with default parameters.

Frequency-Pulse Converter, Repeater and Trip Amplifiers DIN-Rail Model D1060S

Technical Data:

Supply: $12-24 \mathrm{Vdc}$ nom (10 to 30 Vdc) reverse polarity protected,
ripple within voltage limits $\leq 5 \mathrm{Vpp}$.
Current consumption @ 24 V: 60 mA with 20 mA output and transistors energized.
Current consumption @ $12 \mathrm{~V}: 110 \mathrm{~mA}$ with 20 mA output and transistors energized.
Power dissipation: 1.3 W with 24 V supply, 20 mA output and transistors energized.
Max. power consumption: at 30 V supply voltage, overload condition,
transistors output energized and PPC1090 connected, 1.9 W .
Isolation (Test Voltage): I.S. In/Out 1.5 KV I I.S. In/Supply 1.5 KV ;
Analog Out/Supply 500 V ; Analog Out/Digitals Out 500 V ;
Digital Outs/Supply 500 V; Digital Out/Digitals Out 500 V;
Input: magnetic pick-up, contact, proximity to EN60947-5-6, open-collector transistor
for frequency signal up to 50 KHz , TTL CMOS.
Magnetic pick-up sensitivity: $\geq 20 \mathrm{mV}$ pp up to 100 Hz input, $\geq 50 \mathrm{mV}$ pp up to 1 KHz ,
$\geq 100 \mathrm{mVpp}$ up to $5 \mathrm{KHz}, \geq 500 \mathrm{mVpp}$ up to $20 \mathrm{KHz}, \geq 1 \mathrm{Vpp}$ up to 50 KHz .
Switching current levels: $\mathrm{ON} \geq 2.1 \mathrm{~mA}, \mathrm{OFF} \leq 1.2 \mathrm{~mA}$,
switch current $\approx 1.65 \mathrm{~mA} \pm 0.2 \mathrm{~mA}$ hysteresis (for proximity or transistor input).
Equivalent source: $8 \mathrm{~V} 1 \mathrm{~K} \Omega$ typical (8 V no load, 8 mA short circuit).
Integration Time: 100 ms .
Resolution/Visualization: 1 mHz for 50 Hz range, 10 mHz for 500 Hz range,
100 mHz for 5 KHz range, 1 Hz for 50 KHz range.
Input range: 0 to 50.5 KHz maximum.
Burnout: downscale analog output signal for loss of input signal.
Output: $0 / 4$ to 20 mA , on max. 600Ω load source mode, current limited at 22 mA or $0 / 1$ to 5 V or $0 / 2$ to 10 V signal, limited at 11 V .
Resolution: $1 \mu \mathrm{~A}$ current output or 1 mV voltage output.
Transfer characteristic: linear direct or reverse.
Response time: $\leq 50 \mathrm{~ms}$ (10 to 90% step change).
Output ripple: $\leq 20 \mathrm{mV}$ rms on 250Ω load.
Repeater Output: voltage free SPST optocoupled open-collector transistor.
Output factor: direct 1:1 or divided by 10, 100, 1000, 10000, 100000 or 1000000.
Open-collector rating: 100 mA at 35 Vdc ($\leq 1.5 \mathrm{~V}$ voltage drop).
Leakage current: $\leq 50 \mu \mathrm{~A}$ at 35 Vdc .
Frequency response: 50 KHz maximum.
Alarm: Trip point range: within rated limits of input range (see input for step resolution). Delay time: 0 to $1000 \mathrm{~s}, 100 \mathrm{~ms}$ step.
Hysteresis: 0 to 5 Hz for 50 Hz range, 0 to 50 Hz for 500 Hz range,
0 to 500 Hz for 5 KHz range, 0 to 5 KHz for 50 KHz range
(see input visualization parameters for step resolution).
Output: voltage free SPST optocoupled open-collector transistor.
Open-collector rating: 100 mA at $35 \mathrm{Vdc}(\leq 1.5 \mathrm{~V}$ voltage drop).
Leakage current: $\leq 50 \mu \mathrm{~A}$ at 35 Vdc .
Performance: Ref. Conditions 24 V supply, 250Ω load, $23 \pm 1^{\circ} \mathrm{C}$ ambient temperature. Input:
Calibration and linearity accuracy: $\leq \pm 0.05 \%$ of full scale of selected input range.
Temperature influence: $\leq \pm 0.005 \%$ of full scale input range for a $1^{\circ} \mathrm{C}$ change.
Analog Output:
Calibration accuracy: $\leq \pm 0.1 \%$ of full scale.
Linearity error: $\leq \pm 0.05 \%$ of full scale.
Supply voltage influence: $\leq \pm 0.05 \%$ of full scale for a min to max supply change.
Load influence: $\leq \pm 0.05 \%$ of full scale for a 0 to 100% load resistance change.
Temperature influence: $\leq \pm 0.01 \%$ on zero and span for a $1^{\circ} \mathrm{C}$ change.
Compatibility:

- CE mark compliant, conforms to Directive:

2014/34/EU ATEX, 2014/30/EU EMC, 2014/35/EU LVD, 2011/65/EU RoHS.
Environmental conditions: Operating: temperature limits -20 to $+60^{\circ} \mathrm{C}$,
relative humidity max 90% non condensing, up to $35^{\circ} \mathrm{C}$.
Storage: temperature limits -45 to $+80^{\circ} \mathrm{C}$.
Safety Description:

ATEX: II (1)G [Ex ia Ga] IIC, II (1)D DiEx ia Da] IIC, I (M1) [Ex ia Ma] I; II 3 BG Ex ec IIC T4 Gc
IECEx: [Ex ia Ga] IIC, [Ex ia Da] IIIC, [Ex ia Ma] I; Ex ec IIC T4 Gc
INMETRO: [Ex ia Ga] IIC, [Ex ia Da] IIIC, [Ex ia Ma] I
$\mathrm{Uo} / \mathrm{Voc}=10.9 \mathrm{~V}$, $\mathrm{Io} / \mathrm{lsc}=1.1 \mathrm{~mA}, \mathrm{Po} / \mathrm{Po}=3 \mathrm{~mW}$ at terminals $13-16$.
$\mathrm{Uo} / \mathrm{Voc}=15.5 \mathrm{~V}, \mathrm{lo} / \mathrm{lsc}=13 \mathrm{~mA}, \mathrm{Po} / \mathrm{Po}=48 \mathrm{~mW}$ at terminals $14-15$.
$\mathrm{Uo} / \mathrm{Voc}=10.9 \mathrm{~V}$, $\mathrm{Io} / \mathrm{lsc}=23 \mathrm{~mA}, \mathrm{Po} / \mathrm{Po}=60 \mathrm{~mW}$ at terminals 15-16.
$\mathrm{Ui} / \mathrm{Vmax}=30 \mathrm{~V}, \mathrm{Ci}=0 \mathrm{nF}, \mathrm{Li}=0 \mathrm{nH}$ at terminals 13-16.
Um $=250$ Vrms, $-20^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 60^{\circ} \mathrm{C}$.
Approvals:
DMT 01 ATEX E 042 X conforms to EN60079-0, EN60079-11.
IECEX BVS 07.0027X conforms to IEC60079-0, IEC60079-11.
IMQ 09 ATEX 013 X conforms to EN60079-0, EN60079-7.
IECEX IMQ 13.0011X conforms to IEC60079-0, IEC60079-7.
INMETRO DNV 13.0108 X conforms to ABNT NBR IEC60079-0, ABNT NBR IEC60079-11.
UL \& C-UL E222308 conforms to UL913, UL 60079-0, UL60079-11, UL60079-15,
ANSI/ISA 12.12.01 for UL and CSA-C22.2 No.157-92, CSA-E60079-0, CSA-E60079-11, CSA-C22.2 No. 213 and CSA-E60079-15 for C-UL.
FM \& FM-C No. 3024643, 3029921C, conforms to Class 3600, 3610, 3611, 3810,
ANSI/ISA 12.12.02, ANSI/ISA 60079-0, ANSI/ISA 60079-11, C22.2 No.142,
C22.2 No.157, C22.2 No.213, E60079-0, E60079-11, E60079-15.
EAЭC RU C-IT.HA67.B.00113/20 conforms to GOST 31610.0, GOST 31610.11, GOST 31610.15.
CCC n. 2023322316005683 conforms to GB/T 3836.1, GB/T 3834.4.
DNV No. TAA00002BM and KR No.MIL20769-EL001 Cert. for maritime applications.
Mounting: EN/IEC60715 TH 35 DIN-Rail.
Weight: about 155 g .
Connection: by polarized plug-in disconnect screw terminal blocks to accomodate
terminations up to $2.5 \mathrm{~mm}^{2}$.
Location: Safe Area/Non Hazardous Locations or Zone 2, Group IIC T4,
Class I, Division 2, Groups A, B, C, D Temperature Code T4 and
Class I, Zone 2, Group IIC, IIB, IIA T4 installation.
Protection class: IP 20.
Dimensions: Width 22.5 mm , Depth 99 mm , Height 114.5 mm .

Parameters Table:

Safety Description	Maximum External Parameters			
	Group Cenelec	Co/Ca $(\mu \mathrm{F})$	Lo/La (mH)	$\mathrm{Lo} / \mathrm{Ro}$ $(\mu \mathrm{H} / \Omega)$
Terminals 13-16				
Uo/Voc $=10.9 \mathrm{~V}$	IIC	2.05	29000	12000
Io/sc $=1.1 \mathrm{~mA}$	IIB	14.40	117000	48100
Po/Po $=3 \mathrm{~mW}$	IIA	63.00	235000	96200
Terminals 14-15				
Uo/Voc $=15.5 \mathrm{~V}$	IIC	0.508	235	585
Io/lsc $=13 \mathrm{~mA}$	IIB	3.110	941	2342
Po/Po $=48 \mathrm{~mW}$	IIA	12.500	1883	4685
Terminals $15-16$				
Uo/Voc $=10.9 \mathrm{~V}$	IIC	2.05	72	594
Io/sc $=23 \mathrm{~mA}$	IIB	14.40	290	2378
Po/Po $=60 \mathrm{~mW}$	IIA	63.00	580	4757

NOTE for USA and Canada:

IIC equal to Gas Groups A, B, C, D, E, F and G
IIB equal to Gas Groups C, D, E, F and G
IIA equal to Gas Groups D, E, F and G

Function Diagram:

HAZARDOUS AREA ZONE 0 (ZONE 20) GROUP IIC,
HAZARDOUS LOCATIONS CLASS I, DIVISION 1, GROUPS A, B, C, D, CLASS II, DIVISION 1, GROUPS E, F, G, CLASS III, DIVISION 1 ,

CLASS I, ZONE O, GROUP IIC

Image:

SAFE AREA, ZONE 2 GROUP IIC T4,

Function Diagram:

HAZARDOUS AREA ZONE 0 (ZONE 20) GROUP IIC,
HAZARDOUS LOCATIONS CLASS I, DIVISION 1, GROUPS A, B, C, D, CLASS II, DIVISION 1, GROUPS E, F, G, CLASS III, DIVISION 1 , CLASS I, ZONE 0, GROUP IIC

Friendly Configuration with SWC1090 Software and PPC1092 Adapter or Pocket Portable Configurator PPC1090:

Configuration Parameters:

INPUT SECTION:

Input: input range selection
50 Hz
$\square 500 \mathrm{~Hz}$
$\square 5 \mathrm{KHz}$
frequency signal from DC to $50 \mathrm{~Hz}, 1 \mathrm{mHz}$ resolution$50 \mathrm{KHz} \quad$ frequency signal from DC to $5 \mathrm{KHz}, 100 \mathrm{mHz}$ resolution
frequency signal from DC to $50 \mathrm{KHz}, 1 \mathrm{~Hz}$ resolution

Upse input value of measuring range corresponding to defined low output value.
Upscale: input value of measuring range corresponding to defined high output value.

OUTPUT SECTION:

Output: analog output type
$\square 4-20 \mathrm{~mA}$ current output range from 4 to 20 mA
$\square 1-5 \mathrm{~V}$
$\square 2-10 \mathrm{~V}$ current output range from 0 to 20 mAvoltage output range from 1 to 5 V
$\square 0-10 \mathrm{~V}$ voltage output range from 0 to 5 V voltage output range from 2 to 10 V

ALARM SECTION:
Type: alarm type configuration
\square Off alarm functionality is disabled
\square High alarm is set to high condition, the alarm output is triggered whenever the input variable goes above the trip point value (Set)Low alarm is set to low condition, the alarm output is triggered whenever the input variable goes below the trip point value (Set)
\square Low \& Sec
alarm is set to low condition with start-up,
the alarm output is inhibited until the input variable goes above the trip point value (Set); afterwards it behaves as a Low configuration; typically used to solve start-up issues repeats the input frequency, alarm A only
\square Pulse
Set: input value of measuring range at which the alarm output is triggered
Hysteresis: alarm hysteresis value,
valid range: 0 to 5 Hz for 50 Hz range, 0 to 50 Hz for 500 Hz range 0 to 500 Hz for 5 KHz range, 0 to 5 KHz for 50 KHz range.
ON Delay: time for which the input variable has to be in alarm condition before the alarm output is triggered; configurable from 0 to 1000 seconds in steps of 100 ms .
Divider: output divider rate for pulse type alarm A only

$\square 1$	frequency input is repeated directly
10	frequency input is repeated divided by 10
100	frequency input is repeated divided by 100
1 K	frequency input is repeated divided by 1000
10 K	frequency input is repeated divided by 10000
100 K	frequency input is repeated divided by 100000
1000 K	frequency input is repeated divided by 1000000
OC Transistor:	open collector transistor output condition
\square ND	the transistor is in normally de-energized condition,
	it energizes (the output is closed) in alarm condition
NE	the transistor is in normally energized condition,

Each alarm output has independent configurations.

